Improvements of the Interpolation and Non-Orthogonal Correction Schemes in Caelus

Dr. Chris Sideroff
Dr. Darrin Stephens
Mesh Quality Issues

- Sensitivity to mesh quality widely reported
- Two main metrics used to quantify “quality”
 - Non-orthogonality
 - Skewness
- Non-orthogonality *tends* affect gradient reconstruction, i.e. diffusion terms
- Skewness *tends* to affect face interpolation, i.e. convective terms
Central Interpolation

- Central-based schemes (linear, limitedLinear) are one dimensional – very susceptible to skewness
Upwind Interpolation

• Include gradient to get better than 1st order accuracy

\[\varphi_f = \varphi_c + \psi (\bar{x}_f - \bar{x}_c) \frac{\partial \varphi}{\partial \bar{x}} \]
Interpolation Schemes Improvements

- **linearUpwind**
 - Does not limit the slope
 - Attempts to limit the fluxes
- Introduce commonly used slope limiters that adhere to the TVD condition

![Diagram showing the admissible limiter region for second-order TVD schemes (Sweby, 1984)]
New Interpolation Schemes

• 8 new interpolation schemes
 • Barth-Jespersen: linearUpwindBJ{V}
 • Monotonic central: linearUpwindMC{V}
 • Differential limiter: linearUpwindDL{V}
 • MG: linearUpwindMG{V}
 • Minmod: linearUpwindMinmod{V}
 • UMIST: linearUpwindUMIST{V}
 • VanAlbada: linearUpwindVanAlbada{V}
 • VanLeer: linearUpwindVanLeer{V}
New Interpolation Schemes cont.

• 2 implementations
 • Fully implicit
 • Deferred correction
• Deferred correction used for more difficult meshes
• Controlled with dictionary:
 \[\text{div}(\phi, U) \text{ deferredCorrection Gauss dcLinearUpwindBJV grad}(U) 0.5 \]
• 0.5 explicit relaxation factor that multiplies the explicit (high order) part of the discretization (0 – 1)
Advecting Step

Advecting Step

Case: 'struc'; Scheme: 'linear'

- 20x20
- 40x40
- 80x80

Scalar vs. Distance
Advecting Step

![Graph showing scalar vs distance with different grid resolutions.](#)
Advecting Step

Case: 'struc'; Scheme: 'linearUpwind'

- 20x20
- 40x40
- 80x80

Distance vs. Scalar

0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.2 0.4 0.6 0.8 1.0

Scalar

Distance
Advecting Step

Case: 'struc'; Scheme: 'linearUpwindBJ'

- 20x20
- 40x40
- 80x80

Scalar vs Distance Graph
motorBike Test Case
Non-orthogonal Correction on Boundaries

• 1st order accuracy near boundaries
 • Talks from OFWS 8 and 9
 • Personal communication
• Only when grid is non-orthogonal near boundaries
 • Almost always
• No correction applied for all patch types except processor and coupled
• OpenFOAM 2.x and foam-extend 3.x

```cpp
... forAll(corrVecs.boundaryField(), patchi)
    {
        fvsPatchVectorField& patchCorrVecs = corrVecs.boundaryField()[patchi];

        if (!patchCorrVecs.coupled())
        {
            patchCorrVecs = vector::zero;
        }
    } else {

```
N.O.C. on Boundaries cont.

• Doesn’t work with wall functions < yet ;(-) >
 • Wall functions work by modifying v_t near wall cell
• Turned on with dictionary setting
 • \texttt{laplacian(DT,T) Gauss linear secondOrderCorrected;}
Fixed Value Boundary Conditions

- Method of manufactured solutions
Fixed Value Boundary Conditions

- Method of manufactured solutions

Caelus 5.04
Fixed Gradient Boundary Conditions

- Method of manufactured solutions

Caelus 4.10 (OpenFOAM, foam-extend)
Fixed Gradient Boundary Conditions

• Method of manufactured solutions
corrGauss Gradient Scheme

- Face value unknown – iterate a few times (default = 2)
What is Caelus?

- Caelus is a fork of OpenFOAM
- Free and open: www.caelus-cml.com
- Supports multiple platforms (Windows, Linux and Mac)
- Robust compilation (Scons: www.scons.org)
- Easy to install
- Verified and validated turbulence models (conforms to most commonly used variants published in open literature)
- Documentation and validation cases
 - Improving algorithmic robustness on non-”perfect” meshes
 - Multi-dimensional interpolation
 - Improved accuracy on non-”perfect” meshes
 - Non-orthogonal boundary correction
 - Swak, Python wrapping, etc
- New wall functions, new compressible solvers, more numerical improvements
What is Caelus?
What is Caelus?

2.1.4. \(k-\omega \) SST Model

Model description

The \(k-\omega \) shear stress transport (SST) turbulence model was introduced by Menter [16] as an improvement on the original two equation \(k-\omega \) model of Wilcox [14]. The SST formulation uses the \(k-\omega \) formulation in the inner parts of the boundary layer and it switches to a \(k-c \) behaviour in the free-stream portions of the flow domain. Thus, the \(k-\omega \) SST turbulence model does not require a damping function close to the wall enabling its use with near-wall resolved meshes without modification. At the same time, the \(k-\omega \) SST models reverts to a \(k-c \) model behaviour away from the walls thus removing the sensitivity of the original \(k-\omega \) model to the \(\omega \) free-stream boundary value.

The implementation of the \(k-\omega \) SST model in Caelus 4.10 is that of Kuntz et al [3]. The transport equations for turbulence kinetic energy and specific dissipation are:

\[
\partial_t k + \partial_j (\nu \partial_j k) = \frac{P}{\rho} - \beta \omega k + \partial_j (\nu + \nu_t \partial_j) \partial_j k
\]

\[
\partial_t \omega + \partial_j (\nu \partial_j \omega) = \frac{\gamma P}{\rho \omega} - \beta \omega^2 + \partial_j (\nu + \nu_t \partial_j) \partial_j \omega + 2(1 - F_2) \frac{\sigma_{ij}}{\omega} \partial_j k \partial_j \omega
\]

It should be noted that this set of transport equations only applicable for incompressible flows as density was assumed constant. Terms appearing in the \(k-\omega \) SST model have the following definitions:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)</td>
<td>Turbulent viscosity</td>
<td>(\frac{\nu_t}{\max(\nu_t, \nu_s)})</td>
</tr>
<tr>
<td>(S_{ij})</td>
<td>Symmetric part of stress tensor</td>
<td>(\frac{1}{2} \left(\partial_i u_j + \partial_j u_i \right))</td>
</tr>
<tr>
<td>(S)</td>
<td>Strain invariant</td>
<td>(S = \sqrt{S_{ij} S_{ij}})</td>
</tr>
<tr>
<td>(F_2)</td>
<td>Blending function</td>
<td>(\tanh(\arg_2))</td>
</tr>
<tr>
<td>(\arg_2)</td>
<td>Argument for (F_2) function</td>
<td>(\min \left(\frac{\nu_t}{\max(\nu_t, \nu_s)}, \frac{\sigma_{ij}}{\nu_s} \right))</td>
</tr>
<tr>
<td>(CD_{k\omega})</td>
<td>Function</td>
<td>(\max \left(2\nu_t, \frac{1}{\nu_t}, \frac{\nu_t}{\nu_s}, 10^{-10} \right))</td>
</tr>
</tbody>
</table>
About Applied CCM

• Specialise in the application, support and development of OpenFOAM-based computational mechanics
• Main developers of Caelus
• People
 • Darrin Stephens, Chris Sideroff and Aleks Jemcov*
• Locations
 • Australia, Canada and USA
• Engage with customers as their technology partner
Questions

Applied CCM Canada
Dr Chris Sideroff
Phone: 613 276 7472
Email: c.sideroff@appliedccm.ca
Web: www.appliedccm.ca

Applied CCM Pty Ltd
Dr Darrin Stephens
Phone: 03 8376 6962
Email: d.stephens@appliedccm.com.au
Web: www.appliedccm.com.au