A Projection Method Based Fast Transient Solver for Incompressible Turbulent Flows

Chris Sideroff

08 June 2015

Applied CCM © 2012-2015 23rd CFD Society of Canada Conference

- - E - N

Applied CCM

- Specialize in the application, development and support of OpenFOAM[®] - based software
- Creators and maintainers of Caelus
- Locations: Canada, Australia, USA

ヘロト ヘワト ヘビト ヘビト

Motivation

Why develop another transient solver?

- DES and LES attractive because RANS tends to be problem specific
- ► Low cost hardware + open-source software ⇒ DES and LES feasible
- Traditional transient, incompressible algorithms (PISO and SIMPLE) do not scale well for large HPC, GPU and Many Integrated Core (MIC) environments
- Let's review PISO algorithm

・ 同 ト ・ ヨ ト ・ ヨ ト …

PISO Overview

Pressure Implicit with Splitting of Operators (PISO)¹ method:

- 1. Solve momentum equation (predictor step)
- 2. Calculate intermediate velocity, u^* (pressure dissipation added)
- 3. Calculate momentum fluxes
- 4. Solve pressure equation:

$$abla \cdot (\frac{1}{A_p} \nabla p) = \nabla \cdot u^*$$

- 5. Correct momentum fluxes
- 6. Correct velocity (corrector step)

Repeat steps 2-6 for PISO (1-6 for transient SIMPLE)

¹Isaa, R.A. 1985, "Solution of the implicitly discretised fluid flow equations by operator splitting" *J. Comp. Phys.*, **61**, 40.

ヘロア 人間 アメヨア 人口 ア

Fractional Step Error

- Step 2 main issue with PISO
- ► Predicted velocity used only to update matrix coefficients: $u^* = \frac{1}{a_p} \left(\sum a_{nb} u_{nb} - (\nabla p - \overline{\nabla p}) \right)$
- Pseudo-velocity, u*, is used on the RHS of pressure equation
- Therefore requires at least two corrections to make velocity and pressure consistent

ヘロン 人間 とくほ とくほ とう

Pressure Matrix

- Non-constant coefficients (¹/_{a_p}) in pressure matrix affects multi-grid solver performance
- Multi-grid agglomeration levels cached first time pressure matrix assembled
- Coefficients $(\frac{1}{q_v})$ only valid for the first time step
- Turning off caching of agglomeration too expensive

・ 同 ト ・ ヨ ト ・ ヨ ト ・

SLIM Overview

Semi Linear Implicit Method (SLIM), based on projection method¹: decompose velocity into vortical and irrotational components.

- 1. Solve momentum equation (vortical velocity)
- 2. Calculate momentum fluxes (pressure dissipation added)
- 3. Solve pressure equation (irrotational velocity): $\Delta t \nabla^2(p) = \nabla \cdot u$
- 4. Correct momentum flux
- 5. Correct velocity (solenoidal)

Use incremental pressure approach to recover correct boundary pressure

¹Chorin, A.J. 1968, "Numerical Solution of the Navier-Stokes

Equations", Mathematics of Computation 22: 745-762

(E) < (E)</p>

Fractional Step Error

- Velocity split into vortical and potential components much smaller fractional step error
- Pressure and velocity maintain stronger coupling
- Continuity satisfied within one pressure solve because predicted velocity used directly in pressure equation

・聞き ・ヨト ・ヨト

Pressure Matrix

- Pressure matrix coefficients purely geometric
- Multi-grid agglomeration levels assembled during first step now consistent for all time steps
- Significantly improves parallel scalability for multi-grid solver

・ 同 ト ・ ヨ ト ・ ヨ ト

2D Periodic Hills

- Two dimensional, stream-wise, staggered hills of polynomial shape
- ▶ *Re_h* = 10,595
- Stream-wise and span-wise boundaries periodic. Hills and top boundaries no slip.
- ▶ Grid: ~ 4.5 million hex cells; LES model: Smagorinsky

Validation

- Experimental data of Rapp (2009)
- Mean and second moment components at 10 vertical rakes

Applied CCM © 2012-2015 23rd CFD Society of Canada Conference

ヘロト ヘワト ヘビト ヘビト

x/h = 2

- Both compare favorably
- SLIM slightly closer than PISO

Applied CCM © 2012-2015 23rd CFD Society of Canada Conference

< ∃→

x/h = 4

- SLIM consistently closer than PISO at all locations
- Likely due to lower fractional step error

< ∃→

Simulation Time

- SLIM on average about 30% faster on modest HPC system
- Fewer total iterations of pressure equation (SLIM: 10; PISO: 14)

# cores	PISO	SLIM	% diff.
1	2095	1550	26
5	988	711	28
10	419	302	28
20	330	231	30
40	219	147	33
60	216	138	36

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Precursor Simulation

- Establish turbulent conditions to use as initial condition for wind park simulation
- Start from quiescent condition. Run until fully turbulent.
- Steam-wise and span-wise periodic
- Grid size: 50 million hex cells
- Results courtesy of Greg Oxley at Vestas using Firestorm super computer

< 回 > < 回 > < 回 > .

Mean Wind Profile

- SLIM slightly more accurate than PISO
- Fully turbulent condition reached sooner than PISO

< ∃→

- ∢ ⊒ →

< < >> < </>

Scaling

 Consistent multi-grid agglomeration levels give SLIM significant advantage

MPI Profiling

 Profiled MPI calls on 125 million cell mesh up to 4096 cores

Applied CCM © 2012-2015 23rd CFD Society of Canada Conference

イロト 不得 とくほ とくほとう

Future Work

- For static grids, pressure matrix construction may be pulled entirely from time loop to save assembly of pressure matrix every time step
- Advantageous for GPU and MIC computing. Compute pressure matrix once. Only need to transfer RHS vector
- For peta-scale core counts, solve momentum equations explicitly (Runga-Kutta). Combined with above, could perform close to fully explicit codes
- Solvers have been developed and are undergoing testing

ヘロト 人間 ト ヘヨト ヘヨト

Summary

- SLIM significantly faster than PISO. Problem dependent but 30-100% is typical improvement and even more for very large HPC calculations.
- Exact velocity splitting improves both convergence and accuracy
- Geometric pressure matrix coefficients advantageous for parallel efficiency, particularly for multi-grid solvers
- Additional modifications enable scaling to very large number of cores (HPC, GPU, MIC)

くロト (過) (目) (日)

Strategic Perspective

Select research and development projects that are unique and help transfer knowledge to industrial applications.

- Solvers: transient, compressible, multi-phase, combustion, acoustics
- Turbulence: RANS, DES and LES, VLES, wall models
- Sensitivity, design optimisation, and uncertainty propagation: adjoint, tangent
- Numerical acceleration and stabilisation
- Platforms and architectures: HPC, GPU, MIC