VERIFICATION AND VALIDATION OF THE CAELUS LIBRARY - INCOMPRESSIBLE TURBULENCE MODELS

Darrin Stephens, Aleksandar Jemcov and Chris Sideroff

3 Ausugst 2017

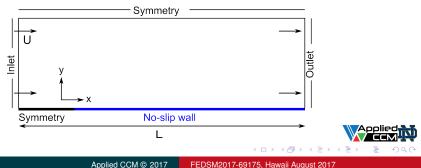
Applied CCM © 2017 FEDSM2017-69175, Hawaii August 2017

A ►

- Is a derivative of OpenFOAM[®].
- ▶ Open Source (GPL): www.caelus-cml.com.
- Supports multiple platforms (Windows, Linux and Mac).
- Easy to install and compile.
- Improved algorithmic robustness on non-"perfect" meshes.
- Improved accuracy on non-"perfect" meshes.
- Stable, predictable API.
- Documentation and validation cases.
- Verified schemes and Validated solvers and turbulence models.

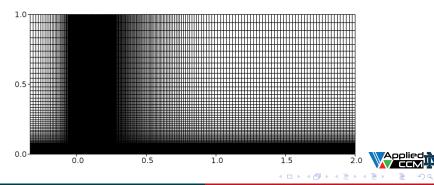
Motivation

- Very few open source CFD solvers and libraies perform or publish verification and validation studies.
- No comprehensive published verification and validation of the turbulence models in OpenFOAM[®].
- This work validates a select number of the RANS turbulence models implemented in Caelus.
 - Turbulence models used include k-ω SST, Spalart-Allmaras, and realizable k-ε models.
- Verification and validation of these turbulence models was conducted using openly available experimental, theoretical, and numerical data.


Results

- Presented test cases obtained from the NASA Langley Turbulence Modeling Resource website http://turbmodels.larc.nasa.gov.
- Caelus simulations are incompressible, but comparison results are from compressible solvers.
- Steady-state solver using Caelus version 6.10.
- Pressure-velocity coupling was achieved via a predictor-corrector algorithm.
- 2^{nd} order finite volume method.
- Advection terms linear upwind with Barth-Jespersen limiter.
- Upwind used for advection of turbulent quantities.

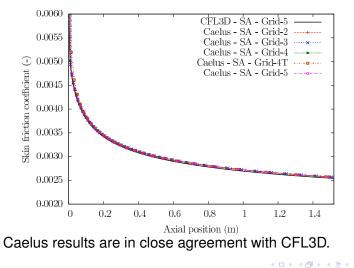
< 回 > < 三 > < 三


Zero Pressure Gradient Flat Plate

- Zero pressure gradient flow over 2D flat plate with sharp-leading edge.
- Grid convergence study carried out with 4 grids and solutions compared with CFL3D data.
- Plate skin-friction coefficient c_f was used to verify the accuracy of the results.
- Freestream velocity of 69.436 ms^{-1} and Re = 5×10^{6} .

Zero Pressure Gradient Flat Plate cont'd

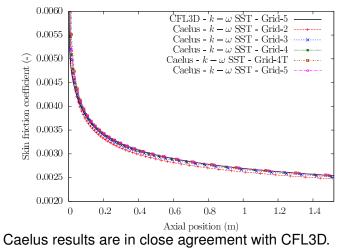
Grid #	points x-dir	points z-dir	Total	y^+
2	68	48	3264	0.405
3	136	96	13,056	0.203
4	272	192	52,224	0.101
4T	triangular	prisms	104,448	0.059
5	544	384	208,896	0.05



Applied CCM © 2017 FEDSM201

FEDSM2017-69175, Hawaii August 2017

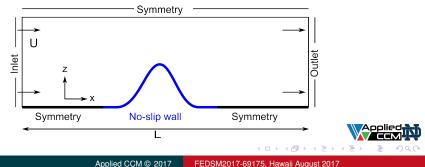
Zero Pressure Gradient Flat Plate cont'd


► Skin friction from Spalart-Allmaras model

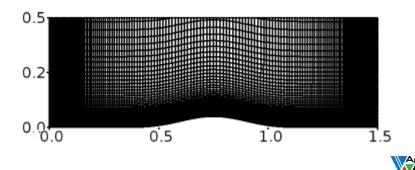
Applied CCM © 2017 FEDSM2017-69175, Hawaii August 2017

Zero Pressure Gradient Flat Plate cont'd

Skin friction from k- ω SST model



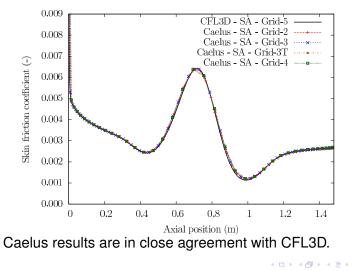
< 🗇 🕨


2D Bump in Channel

- Flow over a 2D bump in a channel.
- Grid convergence study carried out for 4 grids and 2 turbulence models.
- Solutions compared with CFL3D data.
- Skin-friction coefficient c_f was used to verify the accuracy of the results.
- Freestream velocity of 69.436 ms^{-1} and Re = 3×10^{6} .

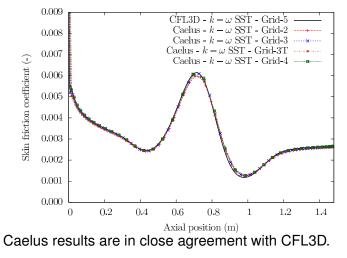
2D Bump in Channel cont'd

Grid #	points x-dir	points z-dir	Total	y^+
2	176	80	14,080	0.236
3	352	160	56,320	0.118
3T	Triangular	prisms	112,640	0.07
4	704	320	225,280	0.059


Applied CCM © 2017 FEDSM2017-69175, Hawaii August 2017

・ロト ・回ト ・ ヨト ・ ヨト

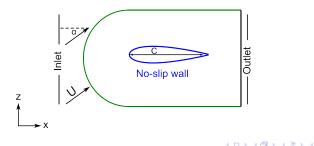
э

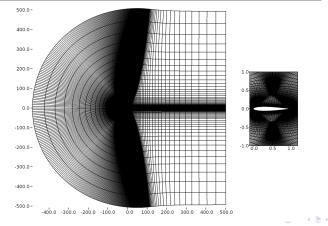

2D Bump in Channel cont'd

Skin friction from Spalart-Allmaras model

2D Bump in Channel cont'd

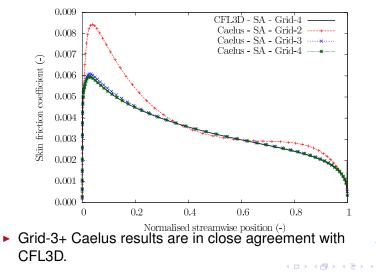
Skin friction from k- ω SST model

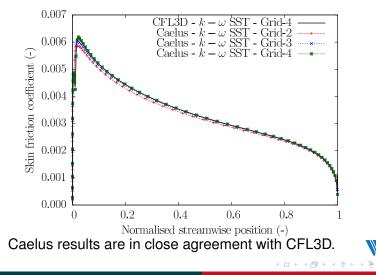



< 🗇 🕨

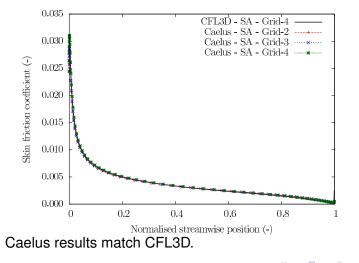
2D NACA 0012 Airfoil

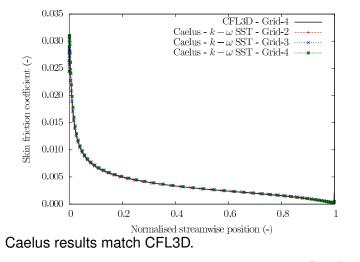
- Flow over a 2D NACA 0012 airfoil. Two angles of attack were considered: α = 0° and 10°.
- Grid convergence study carried out with 3 grids and solutions compared with CFL3D and experimental data.
- Skin-friction c_f and pressure coefficient c_p were used to verify the accuracy of the results.
- Freestream velocity of 52.077 ms^{-1} and Re = 6×10^{6} .

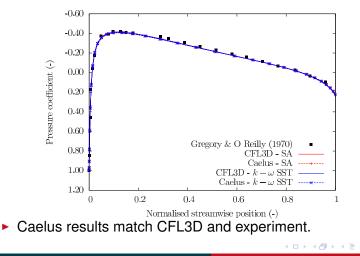

Grid #	points x-dir	points z-dir	Total	y^+
2	128	64	14,336	0.465
3	256	128	57,344	0.209
4	512	256	229,376	0.098

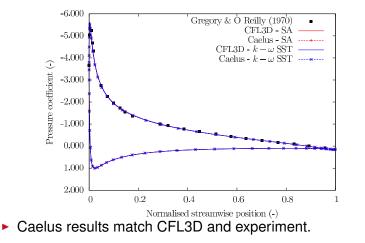


Applied CCM © 2017 FEDSM2017-69175, Hawaii August 2017

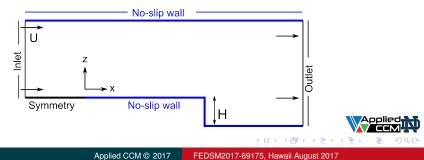

Skin friction from Spalart-Allmaras model ($\alpha = 0^{\circ}$)

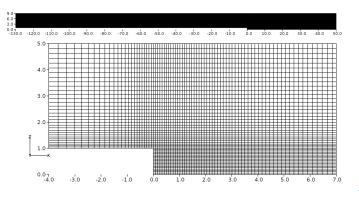

Skin friction from k- ω SST model ($\alpha = 0^{\circ}$)


• Skin friction from Spalart-Allmaras model ($\alpha = 10^{\circ}$)


• Skin friction from k- ω SST model ($\alpha = 10^{\circ}$)

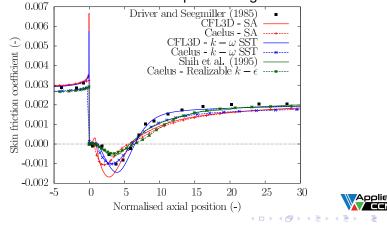
 Pressure coefficient from Spalart-Allmaras and k-ω SST models (α = 0°)

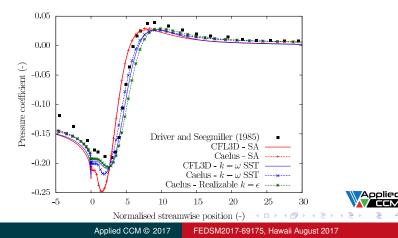

 Pressure coefficient from Spalart-Allmaras and k-ω SST models (α = 10°)



Backward Facing Step

- Flow over a 2D backward facing step.
- Efficacy of wall functions for separated flow is evaluated.
- Turbulence models Spalart-Allmaras, k-ω SST and realizable k-ε compared with CFL3D and experimental data
- Skin-friction c_f and pressure c_p coefficient were used to verify the accuracy of the results.
- Freestream velocity of $44.315 ms^{-1}$ and Re = 36,000.


- ▶ 14,676 elements, y⁺ ~ 30.
- CFL3D results obained on a $y^+ \sim 1$ grid.


ヘロト ヘアト ヘビト ヘ

- Upstream of the step, agreement is quite good.
- ► Downstream, post-reattachment under predicts *c*_f.
- ► k-ω SST turbulence model gives closest to the experimental data within the separated region.

Applied CCM © 2017 FEDSM2017-69175, Hawaii August 2017

- c_p from k-ω SST and realizable k-ε are quite close over entire region and in fair agreement with experimental data.
- Spalart-Allmaras shows significant deviation in region of pressure minima.

- A key feature when modelling the backward facing step is prediction of the reattachment location downstream of the step.
- ► Of the models considered, the realizable k-e prediction is best agreement with the experimentally obtained value.

Туре	Reattachment location (x/H)
Experimental	6.26 ± 0.10
SA	5.55
k - ω SST	6.08
k-e	6.27

Summary

- Several verification and validation cases for a steady, turbulent, incompressible flow have been described.
- On selected cases grid independence was demonstrated.
- All results were compared to the previously verified and validated solver, CFL3D, and where available, experimental data.
- The incompressible RANS turbulence models implemented in Caelus faithfully represent the known performance of each model.

Applied CCM

- Specialise in the application, development and support of OpenFOAM[®] - based software
- ► Creators and maintainers of Caelus
- Locations: Australia, Canada, USA

